Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38592738

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Adenosina Difosfato , Adenosina Monofosfato , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Humanos , Regulación Alostérica , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/química , Ligandos , Fosforilación , Adenosina Trifosfato/metabolismo , Activación Enzimática , Unión Proteica
2.
Biochem J ; 480(23): 1951-1968, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-37962491

RESUMEN

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Dominio Catalítico , Melanoma/genética , Mutación , Neoplasias Cutáneas/genética
3.
Life Metab ; 2(5): load027, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37621729

RESUMEN

The AMP-activated protein kinase (AMPK) is known to maintain the integrity of cellular mitochondrial networks by (i) promoting fission, (ii) inhibiting fusion, (iii) promoting recycling of damaged components via mitophagy, (iv) enhancing lysosomal biogenesis to support mitophagy, and (v) promoting biogenesis of new mitochondrial components. While the AMPK targets underlying the first three of these effects are known, a recent paper suggests that direct phosphorylation of the folliculin-interacting protein 1 (FNIP1) by AMPK may be involved in the remaining two.

4.
Science ; 380(6652): 1322-1323, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37384699

RESUMEN

A signaling pathway that senses energy stress opposes necroptotic cell death.


Asunto(s)
Necroptosis , Transducción de Señal , Metabolismo Energético , Humanos
5.
Nat Rev Mol Cell Biol ; 24(4): 255-272, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36316383

RESUMEN

The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metabolismo Energético , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos , Glucosa/metabolismo , Adenosina Trifosfato/metabolismo
6.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203624

RESUMEN

AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.


Asunto(s)
Benzamidas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Pirimidinas , Humanos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas Activadas por AMP
7.
Biochem J ; 479(22): 2327-2343, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36383046

RESUMEN

A casual decision made one evening in 1976, in a bar near the Biochemistry Department at the University of Dundee, led me to start my personal research journey by following up a paper that suggested that acetyl-CoA carboxylase (ACC) (believed to be a key regulatory enzyme of fatty acid synthesis) was inactivated by phosphorylation by what appeared to be a novel, cyclic AMP-independent protein kinase. This led me to define and name the AMP-activated protein kinase (AMPK) signalling pathway, on which I am still working 46 years later. ACC was the first known downstream target for AMPK, but at least 100 others have now been identified. This article contains some personal reminiscences of that research journey, focussing on: (i) the early days when we were defining the kinase and developing the key tools required to study it; (ii) the late 1990s and early 2000s, an exciting time when we and others were identifying the upstream kinases; (iii) recent times when we have been studying the complex role of AMPK in cancer. The article is published in conjunction with the Sir Philip Randle Lecture of the Biochemical Society, which I gave in September 2022 at the European Workshop on AMPK and AMPK-related kinases in Clydebank, Scotland. During the early years of my research career, Sir Philip acted as a role model, due to his pioneering work on insulin signalling and the regulation of pyruvate dehydrogenase.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Complejos Multienzimáticos/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Fosforilación
8.
Sci Adv ; 8(45): eabo7956, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36367943

RESUMEN

Mitochondria are dynamic organelles that undergo membrane remodeling events in response to metabolic alterations to generate an adequate mitochondrial network. Here, we investigated the function of mitochondrial fission regulator 1-like protein (MTFR1L), an uncharacterized protein that has been identified in phosphoproteomic screens as a potential AMP-activated protein kinase (AMPK) substrate. We showed that MTFR1L is an outer mitochondrial membrane-localized protein modulating mitochondrial morphology. Loss of MTFR1L led to mitochondrial elongation associated with increased mitochondrial fusion events and levels of the mitochondrial fusion protein, optic atrophy 1. Mechanistically, we show that MTFR1L is phosphorylated by AMPK, which thereby controls the function of MTFR1L in regulating mitochondrial morphology both in mammalian cell lines and in murine cortical neurons in vivo. Furthermore, we demonstrate that MTFR1L is required for stress-induced AMPK-dependent mitochondrial fragmentation. Together, these findings identify MTFR1L as a critical mitochondrial protein transducing AMPK-dependent metabolic changes through regulation of mitochondrial dynamics.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dinámicas Mitocondriales , Animales , Ratones , Fosforilación , Proteínas Quinasas Activadas por AMP/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo , Mamíferos/metabolismo
9.
Endocr Relat Cancer ; 29(12): T1-T13, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094878

RESUMEN

Otto Warburg published the first paper describing what became known as the Warburg effect in 1923. All that was known about glucose metabolism at that time was that it occurred in two stages: (i) fermentation (glycolysis) in which glucose was converted to lactate, which did not require oxygen, and (ii) oxidative metabolism, in which the carbon atoms derived from glycolysis were fully oxidized to carbon dioxide, which did require oxygen. Warburg discovered that most tumour tissues produced a large amount of lactate that was reduced but not eliminated in the presence of oxygen, while most normal tissues produced a much smaller amount of lactate that was eliminated by the provision of oxygen. These findings were clearly well ahead of their time because it was another 80 years before they were to have any major impact, and even today the mechanisms underlying the Warburg effect are not completely understood.


Asunto(s)
Dióxido de Carbono , Neoplasias , Glucosa/metabolismo , Glucólisis , Humanos , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Oxígeno
11.
Commun Biol ; 5(1): 642, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768580

RESUMEN

The hypoxic ventilatory response (HVR) is critical to breathing and thus oxygen supply to the body and is primarily mediated by the carotid bodies. Here we reveal that carotid body afferent discharge during hypoxia and hypercapnia is determined by the expression of Liver Kinase B1 (LKB1), the principal kinase that activates the AMP-activated protein kinase (AMPK) during metabolic stresses. Conversely, conditional deletion in catecholaminergic cells of AMPK had no effect on carotid body responses to hypoxia or hypercapnia. By contrast, the HVR was attenuated by LKB1 and AMPK deletion. However, in LKB1 knockouts hypoxia evoked hypoventilation, apnoea and Cheyne-Stokes-like breathing, while only hypoventilation and apnoea were observed after AMPK deletion. We therefore identify LKB1 as an essential regulator of carotid body chemosensing and uncover a divergence in dependency on LKB1 and AMPK between the carotid body on one hand and the HVR on the other.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Cuerpo Carotídeo , Hipoxia , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Apnea , Cuerpo Carotídeo/metabolismo , Humanos , Hipercapnia/metabolismo , Hipoventilación/metabolismo , Hipoxia/metabolismo
12.
Cell Rep ; 39(5): 110761, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508122

RESUMEN

AMP-activated protein kinase (AMPK) coordinates energy homeostasis during metabolic and energy stress. We report that the catalytic subunit isoform AMPK-α1 (but not α2) is cleaved by caspase-3 at an early stage during induction of apoptosis. AMPK-α1 cleavage occurs following Asp529, generating an ∼58-kDa N-terminal fragment (cl-AMPK-α1) and leading to the precise excision of the nuclear export sequence (NES) from the C-terminal end. This cleavage does not affect (1) the stability of pre-formed heterotrimeric complexes, (2) the ability of cl-AMPK-α1 to become phosphorylated and activated by the upstream kinases LKB1 or CaMKK2, or (3) allosteric activation by AMP or A-769662. Importantly, cl-AMPK-α1 is only detectable in the nucleus, consistent with removal of the NES, and ectopic expression of cleavage-resistant D529A-mutant AMPK-α1 promotes cell death induced by cytotoxic agents. Thus, we have elucidated a non-canonical mechanism of AMPK activation within the nucleus, which protects cells against death induced by DNA damage.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Caspasas , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Caspasas/metabolismo , Núcleo Celular/metabolismo , Daño del ADN , Fosforilación
13.
Biochim Biophys Acta Mol Cell Res ; 1869(7): 119252, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35271909

RESUMEN

AIMS: Engagement of epidermal growth factor (EGF) with its receptor (EGFR) produces a broad range of cancer phenotypes. The overriding aim of this study was to understand EGFR signaling and its regulation by the Ca2+/calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) in cancer cells. RESULTS: In ovarian cancer cells and other cancer cell types, EGF-induced activation of oncogenic Akt is mediated by both the canonical PI3K-PDK1 pathway and by CaMKK2. Akt activation induced by EGF occurs by both calcium-dependent and calcium-independent mechanisms. In contrast to the canonical pathway, CaMKK2 neither binds to, nor is regulated by phosphoinositides but is activated by Ca2+/CaM. Akt activation at its primary activation site, T308 occurs by direct phosphorylation by CaMKK2, but activation at its secondary site (S473), is through an indirect mechanism requiring mTORC2. In cells in which another CaMKK2 target, 5'AMP-dependent protein kinase (AMPK) was deleted, Akt activation and calcium-dependency of activation were still observed. CaMKK2 accumulates in the nucleus in response to EGF and regulates transcription of phosphofructokinase platelet (PFKP) a glycolytic regulator. CaMKK2 is required for optimal PFK activity. CaMKK2 regulates transcription of plasminogen activator, urokinase (PLAU) a metastasis regulator. The EGFR inhibitor gefitinib synergizes with CaMKK2 inhibition in the regulation of cell survival and increases the dose-reduction index. CRISPR/Cas9 knockout of CaMKK2 leads to compensatory PTEN downregulation and upregulation of Akt activation. CONCLUSIONS: CaMKK2-mediation of EGFR action may enable cancer cells to use intracellular calcium elevation as a signal for growth and survival.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina , Neoplasias , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/genética , Proteínas Proto-Oncogénicas c-akt/genética
14.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493662

RESUMEN

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo Energético , Mitocondrias/patología , Mitofagia , Condicionamiento Físico Animal , Proteínas Quinasas Activadas por AMP/genética , Animales , Humanos , Masculino , Ratones , Mitocondrias/metabolismo
16.
Nat Metab ; 2(9): 799-800, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32719535
17.
Int J Mol Sci ; 21(10)2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32429235

RESUMEN

We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Oxígeno/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Dieta , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Isoformas de Proteínas/metabolismo , Respiración , Trastornos Respiratorios/metabolismo , Trastornos Respiratorios/patología , Termogénesis
18.
FASEB J ; 34(5): 6284-6301, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32201986

RESUMEN

Mitophagy is a key process regulating mitochondrial quality control. Several mechanisms have been proposed to regulate mitophagy, but these have mostly been studied using stably expressed non-native proteins in immortalized cell lines. In skeletal muscle, mitophagy and its molecular mechanisms require more thorough investigation. To measure mitophagy directly, we generated a stable skeletal muscle C2C12 cell line, expressing a mitophagy reporter construct (mCherry-green fluorescence protein-mtFIS1101-152 ). Here, we report that both carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment and adenosine monophosphate activated protein kinase (AMPK) activation by 991 promote mitochondrial fission via phosphorylation of MFF and induce mitophagy by ~20%. Upon CCCP treatment, but not 991, ubiquitin phosphorylation, a read-out of PTEN-induced kinase 1 (PINK1) activity, and Parkin E3 ligase activity toward CDGSH iron sulfur domain 1 (CISD1) were increased. Although the PINK1-Parkin signaling pathway is active in response to CCCP treatment, we observed no change in markers of mitochondrial protein content. Interestingly, our data shows that TANK-binding kinase 1 (TBK1) phosphorylation is increased after both CCCP and 991 treatments, suggesting TBK1 activation to be independent of both PINK1 and Parkin. Finally, we confirmed in non-muscle cell lines that TBK1 phosphorylation occurs in the absence of PINK1 and is regulated by AMPK-dependent signaling. Thus, AMPK activation promotes mitophagy by enhancing mitochondrial fission (via MFF phosphorylation) and autophagosomal engulfment (via TBK1 activation) in a PINK1-Parkin independent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Dinámicas Mitocondriales , Mitofagia , Músculo Esquelético/patología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Activación Enzimática , Células HeLa , Humanos , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Ionóforos de Protónes/farmacología , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
19.
Cell Metab ; 31(3): 472-492, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130880

RESUMEN

The AMPK (AMP-activated protein kinase) and TOR (target-of-rapamycin) pathways are interlinked, opposing signaling pathways involved in sensing availability of nutrients and energy and regulation of cell growth. AMPK (Yin, or the "dark side") is switched on by lack of energy or nutrients and inhibits cell growth, while TOR (Yang, or the "bright side") is switched on by nutrient availability and promotes cell growth. Genes encoding the AMPK and TOR complexes are found in almost all eukaryotes, suggesting that these pathways arose very early during eukaryotic evolution. During the development of multicellularity, an additional tier of cell-extrinsic growth control arose that is mediated by growth factors, but these often act by modulating nutrient uptake so that AMPK and TOR remain the underlying regulators of cellular growth control. In this review, we discuss the evolution, structure, and regulation of the AMPK and TOR pathways and the complex mechanisms by which they interact.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Células/metabolismo , Nutrientes/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/genética , Animales , Proliferación Celular , Daño del ADN , Humanos
20.
Cell Metab ; 31(2): 217-218, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32023445

RESUMEN

Deficiency of glucose, even under sufficient amino acid supply, turns off translation and promotes catabolic processes to aid cell survival. A recent report by Yoon et al. (2020) shows that glucose is required for the full activity of the leucyl-tRNA synthetase LARS1 and maintains mTORC1 function via LARS1 to enhance translation. Glucose starvation abolishes both effects via phosphorylation of LARS1 by the AMPK-ULK1 signaling pathway. This study supports the idea that glucose starvation inhibits translation at multiple levels.


Asunto(s)
Aminoacil-ARNt Sintetasas , Inanición , Homólogo de la Proteína 1 Relacionada con la Autofagia , Glucosa , Humanos , Leucina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...